Esercitazioni di Meccanica Razionale

a.a. 2002/2003

Cinematica del corpo rigido

Maria Grazia Naso

naso@ing.unibs.it

Dipartimento di Matematica Università degli Studi di Brescia

Teorema di Mozzi e asse di Mozzi

Formula fondamentale della cinematica dei sistemi rigidi:

$$\vec{v}_P(t) = \vec{v}_{O'}(t) + \vec{\omega}(t) \times (P - O'). \tag{1}$$

TEOREMA DI MOZZI. In ogni istante l'atto di moto più generale di un sistema rigido è rototraslatorio o elicoidale, i.e. esiste un punto O'' tale che

$$\vec{v}_P(t) = \vec{v}_{O''}(t) + \vec{\omega}(t) \times (P - O''), \qquad (2)$$

con $\vec{v}_{O''} \parallel \vec{\omega}$. In particolare potrà risultare traslatorio $(\vec{\omega}(t) = \vec{0})$ o rotatorio $(\vec{v}_{O''}(t) = \vec{0})$.

ightharpoonup Asse di Mozzi: la retta passante per O'' e parallela ad $\vec{\omega}$.

Esercizio 1. Si determini l'equazione dell'asse di Mozzi.

Risoluzione. Sia $O''\in \text{asse di Mozzi: } \vec{v}_{O''}\parallel\vec{\omega}\text{ o }\vec{v}_{O''}=\vec{0}.$ Da (1), con $P\equiv O''$, risulta

$$\vec{v}_{O''} = \vec{v}_{O'} + \vec{\omega} \times (O'' - O')$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad$$

Quindi si trova

$$(O'' - O') = \lambda(O'')\vec{\omega} + \frac{\vec{\omega} \times \vec{v}_{O'}}{\omega^2}$$

dove
$$\lambda(O''):=rac{(O''-O')\cdot ec{\omega}}{\omega^2}\in \mathbb{R}.$$

► Invariante SCALARE: $I := \vec{v}_O \cdot \vec{\omega}$ (non dipende dal punto O).

Consideriamo l'atto di moto di un corpo rigido in un istante t:

$$\vec{v}_P(t) = \vec{v}_O(t) + \vec{\omega}(t) \times (P - O). \tag{3}$$

- Se $\vec{\omega}(t) = \vec{0}$, allora $\vec{v}_P(t) = \vec{v}_O(t)$ e l'atto di moto è traslatorio $(\vec{v}_O(t) \neq \vec{0})$ o nullo $(\vec{v}_O(t) = \vec{0})$.
- ▶ Se $\vec{\omega}(t) \neq \vec{0}$, applicando in (3) l'identità

$$\vec{v}_O = \frac{\vec{v}_O \cdot \vec{\omega}}{\omega^2} \vec{\omega} + \frac{\vec{\omega} \times (\vec{v}_O \times \vec{\omega})}{\omega^2},$$

si trova

$$\vec{v}_P = \frac{I}{\omega^2} \vec{\omega} + \vec{\omega} \times \left[(P - O) + \frac{\vec{v}_O \times \vec{\omega}}{\omega^2} \right].$$
 (4)

Si introduca il punto C tale che $(C-O):=\frac{\vec{\omega}\times\vec{v}_O}{\omega^2}$. Quindi (4) diventa

$$\vec{v}_P = \frac{I}{\omega^2} \vec{\omega} + \vec{\omega} \times (P - C), \qquad (5)$$

e $\vec{v}_C = \frac{I}{\omega^2} \vec{\omega}$, $C \in \text{asse di Mozzi (N.B. deve essere } \vec{\omega} \neq \vec{0}$).

- ightharpoonup Se $I \neq 0$, l'atto di moto è elicolidale.
- Se I=0, $\vec{\omega} \neq \vec{0}$, l'atto di moto è rotatorio (l'asse di Mozzi è l'asse di istantanea rotazione).
- ▶ Se I=0, $\vec{\omega}=\vec{0}$, $\vec{v}_O \neq \vec{0}$, l'atto di moto è traslatorio.
- ightharpoonup Se I=0, $ec{\omega}=ec{0}$, $ec{v}_O=ec{0}$, l'atto di moto è nullo.